Скорость воздуха в воздуховоде: нормы и расчет значений

Важность воздухообмена для человека

По строительным и гигиеническим нормам, каждый жилой или производственный объект необходимо обеспечить системой вентиляции.

Главное ее назначение – сохранение воздушного баланса, создание благоприятного для работы и отдыха микроклимата. Это значит, что в атмосфере, которой дышат люди, не должно наблюдаться переизбытка тепла, влаги, загрязнений различного рода.

Нарушения в организации системы вентиляции приводят к развитию инфекционных болезней и заболеваний дыхательной системы, к снижению иммунитета, к преждевременной порче продуктов питания.

В излишне влажной и теплой среде быстро развиваются болезнетворные микроорганизмы, на стенах, потолках и даже на мебели появляются очаги плесени и грибка.

Схема вентиляции
Схема вентиляции в двухэтажном частном доме. Вентиляционная система оборудована приточно-вытяжной энергосберегающей установкой с рекуператором теплоты, который позволяет повторно использовать тепло выводимого из здания воздуха

Одним из условий сохранения здорового воздушного баланса является правильное проектирование системы вентиляции. Каждая часть воздухообменной сети должна быть подобрана, исходя из объемов помещения и характеристик воздуха в нем.

Предположим, в небольшой квартире достаточно хорошо налаженной приточно-вытяжной вентиляции, тогда как в производственных цехах обязательна установка оборудования для принудительного воздухообмена.

При строительстве домов, общественных учреждений, цехов предприятий руководствуются следующими принципами:

  • каждое помещение нужно обеспечить системой вентиляции;
  • необходимо соблюдать гигиенические параметры воздуха;
  • на предприятиях следует установить устройства, увеличивающие и регулирующие скорость воздухообмена; в жилых помещениях – кондиционеры или вентиляторы при условии недостаточной вентиляции;
  • в помещениях разного назначения (например, в палатах для больных и операционной или в офисе и в комнате для курения) необходимо оборудовать разные системы.

Чтобы вентиляция соответствовала перечисленным условиям, нужно сделать расчеты и подобрать оборудование – приборы подачи воздуха и воздуховоды.

Также при устройстве вентиляционной системы необходимо правильно выбирать места забора воздуха, чтобы не допустить поступления загрязненных потоков обратно в помещения.

Места выброса и забора воздуха
В процессе составления проекта вентиляции для частного дома, многоэтажного жилого здания или производственного помещения рассчитывают объем воздуха и намечают места монтажа вентиляционного оборудования: водухообменных установок, кондиционеров и воздуховодов

От размеров воздуховодов (в том числе домовых шахт) зависит эффективность воздухообмена. Выясним, каковы нормы скорости потока воздуха в вентиляции, указанные в санитарной документации

Зачем выполнять расчёт скорости воздуха в воздуховоде

Задача расчёта скорости воздуха в воздуховоде обычно возникает при проверке проекта вентиляции, в котором указан расход и выбрано сечение воздуховода.

Цель расчёта — понять, правильно ли выбрано сечение воздуховода для данного расхода воздуха. Кроме того, скорость воздуха в воздуховоде должна быть указана на аксонометрической схеме системы вентиляции.

Формула расчёта скорости воздуха в воздуховоде

В общем случае скорость воздуха в воздуховоде определяется по формуле:

  • v = G/S, где G и S — соответственно, расход воздуха в воздуховоде и площадь его сечения.

При использовании этой формулы следует учитывать размерности расхода и площади. Чаще всего расход выражен в м3/час, а размеры воздуховода — в миллиметрах, то есть площадь сечения будет в мм2. Подстановка чисел в м3/час и мм2 недопустима. Для получения скорости воздуха в м/с следует пересчитать расход воздуха в кубических метрах в секунду (м3/с), а площадь сечения в квадратных метрах (м2).

Пример расчёта скорости воздуха в воздуховоде

Например, для воздуховода 600×300 с расходом воздуха 2000 м3/час получим:

  1. Размеры воздуховода переводим в метры, имеем 0,6 и 0,3 м.
  2. Площадь сечения S = 0,6·0,3 = 0,18 м2
  3. Расход воздуха G = 2000 м3/час = 2000/3600 м3/с = 0,56 м3/с
  4. Скорость воздуха v = G/S = 0,56/0,18 = 3,1 м/с.

Связь характеристик вентиляционных систем с уровнем шума

Процесс замера скорости воздуха

Процесс замера скорости воздуха.

В эмпирических формулах расчета уровня шума вентиляционной сети фигурируют расход воздуха, поперечные размеры воздуховода, безразмерные величины, характеризующие качество звукоизоляции помещения, а также значения сопротивления для ровных и изогнутых участков труб.

Уменьшение аэродинамических потерь воздуховода, расширение проходного сечения и установка вентилятора с меньшим расходом воздуха позволят сберечь электроэнергию. Потребляемая вентилятором энергия напрямую зависит от величины расхода воздуха и напора. Он, в свою очередь, прямо пропорционален скорости воздуха в воздуховоде.

Повысив скорость воздуха, можно уменьшить диаметр сечения воздуховода и сэкономить на покупке составных частей и монтаже. Повышение скорости достигается установкой высоконапорных вентиляторов. Имея ту же производительность, что и низконапорные, они будут расходовать больше электроэнергии и их эксплуатация обойдется дороже.

Конкретно сказываются на уровне шума следующие допустимые параметры вентиляционной системы:

Таблица расчетов сечения прямоугольных воздуховодов

Таблица расчетов сечения прямоугольных воздуховодов.

  1. Расход воздуха. Имея установленную конфигурацию и размеры системы воздуховодов, можно снизить уровень шума за счет уменьшения расхода.
  2. Площадь сечения воздуховода. Ее увеличение дает более слабый шум на выходе из вентиляционных отверстий.
  3. Коэффициент аэродинамического сопротивления. Определяется совершенством формы переходных участков трубопровода. Применение обтекаемых и плавных отводов, диффузоров и дросселей может помочь в достижении низкого шума при эксплуатации.
  4. Все вышеперечисленные факторы могут быть учтены в зависимости от конкретной ситуации и задач, которые ставит проектировщик. Взвешенно и критически подходя к подбору всех параметров, удастся найти сбалансированное решение для конструкции будущей вентиляции.

Схема компоновки и план прокладки вентиляционных каналов системы вентиляции

При компоновке и размещении приточно-вытяжного комплекса надо руководствоваться следующими условиями:

Таблица расчета для сечения круглых воздуховодов

Таблица расчета для сечения круглых воздуховодов.

  1. По мере удаления от вентиляционной камеры или вентилятора сила звуковых колебаний в воздуховодах гасится. Потому целесообразнее расположить ее вдали от самых малошумных помещений.
  2. Дроссельные редукторы желательно размещать на как можно большем расстоянии от рассматриваемого помещения. После него не помешает поставить концевые глушители или гибкие вставки из звукоизолирующих материалов.
  3. Для вентиляционных каналов рабочие скорости течения воздуха принимаются в пределах допустимых в зависимости от класса, кубатуры помещения и требований к безопасному шумовому фону.
  4. На всех участках вентиляционной сети минимизируют число гидравлических потерь, так как производимый крыльчаткой вентилятора шум тем больше, чем большее сопротивление встречается на пути воздушных масс.
  5. Для систем высокой производительности обязательным условием бесшумной работы остается использование глушителей. Предполагаемые места под глушители должны быть непременно учтены на стадии проектирования.
  6. Настройку параметров аэродинамики, тихоходности и наладку работы системы вентиляции рекомендуется проводить параллельно, чтобы достичь приемлемой громкости шума при сохранении требуемых показателей расхода среды.

Особенности выбора вентилятора

В выборе вентилятора надо руководствоваться следующими требованиями:

Схема определения шумовых характеристик канальных вентиляторов

Схема определения шумовых характеристик канальных вентиляторов.

  1. У устройства должен быть минимальный удельный уровень мощности звука и узкий спектр звуковых волн, соответствующий предъявляемым условиям эксплуатации.
  2. Мощность вентилятора выбирается в соответствии с суммарными потерям при движении воздуха по каналам сети.
  3. Не рекомендуется применять крыльчатку с числом лопастей меньше 12. Такие конфигурации зачастую создают дополнительные тона аэродинамического шума при прохождении воздушной среды через крыльчатку. Усиление шумов определяется отдельным устройством вентилятора, отклонением воздушных масс при попадании на крыльчатку и дальнейшим взаимодействием потока с внутренней поверхностью воздуховодов.
  4. В сетях, где расход регулируется, отдельно учитывают воздействие изменения аэродинамических характеристик на громкость работы вентилятора. Снижение расхода при изменении угла установки лопастей может существенно усилить создаваемый шум.
  5. Дополнительно отрегулировать громкость работы агрегата позволит понижение частоты оборотов рабочего колеса в диапазоне регулирования при неизменной мощности.
  6. Штуцеры вентилятора и подключаемые участки воздуховода лучше соединять через гибкие вставки, гасящие вибрации, которые передает корпус агрегата на остальные участки.

Рекомендуемые места установки вентиляторов

В проектировании тихих систем вентиляции кроме подбора устройств с удовлетворительными шумовыми характеристиками нужно подбирать выгодные места их установки.

В разрабатываемом здании вентиляторы располагают в специально отведенных звукоизолированных помещениях – в вентиляционных камерах. Камеры ставят обособленно от помещений с повышенными требованиями к тишине и комфортному уровню шума. Их оборудуют вдали от шахт лифтов, лестничных переходов, дверных и оконных проемов.

Вентиляторы, размещенные на открытых ярусах, крепят вдали от отражающих поверхностей, от углов, в места, где гарантируется незначительное проникновение шума в жилые и рабочие помещения, а также на окружающие здание снаружи строения.

Выводы воздуховодов в открытое пространство предполагается направить так, чтобы шум не направлялся в сторону жилых построек и мест отдыха. Корректное направление звука от работы вентиляции эффективно помогает в минимизации шумовых помех вентиляционных комплексов объектов.

Правильно разместив в пространстве и направив выходное отверстие вентиляции, вы добьетесь снижения шума до разрешенных пределов без дополнительных затрат.

Зависимость шума от скорости потока воздуха

Таблица допустимого уровня шума для систем кондиционирования и вентиляции

Таблица допустимого уровня шума для систем кондиционирования и вентиляции.

Предположим, что звук работы вентилятора минимален и фактически неразличим. Но остается ощутимый шум от прохождения воздуха через развитую сеть каналов, при встрече с препятствиями в виде отводов, дросселей и диффузоров. Он является следствием дополнительных возмущений потока при обтекании препятствий, что приводит к скачкам давления и скорости. Шум будет тем сильнее и интенсивнее, чем выше скорость потока и больше коэффициент сопротивления отдельного элемента конструкции. Коэффициент, в свою очередь, зависит от формы, размеров и характера обработки поверхности элемента воздуховода, от силы и направления завихрений в проходящем через него потоке.

В итоге при наличии всех нежелательных факторов, препятствующих плавному прохождению воздушной массы через распределительные и регулирующие устройства, уровень нежелательного шума на выходе воздуховодов может возрастать на 5-15 дБ.

Допустимая скорость потока в вентиляционных каналах не может превышать максимальные разрешенные значения, иначе будут превышены приемлемые показатели шума. Определяющими факторами в выборе максимальной скорости воздушного потока являются условный проход и минимальная толщина стенки вентиляционного канала. Толщина стенки:

  • до 0,6 и площадь сечения до 300х900 мм – скорость до 10 м/с;
  • 0,6-0,8 мм, площадь сечения от 300х900 до 900х1200 мм – скорость до 9 м/с;
  • 0,8-1 мм, площадь сечения от 900х1200 до 1200×1800 мм – скорость до 8 м/с.

В вопросе создания тихой и эффективной системы вентиляции нет однозначного решения, но есть поистине большое число гибких и эргономичных вариантов проектировки с учетом растущих запросов потребителей и появления более совершенных и универсальных материалов и изделий.

Порядок проведения вычислений

Отображение всех элементов
Алгоритм проведения вычислений таков:

  • Составляется аксонометрическая схема с перечислением всех элементов.
  • На основании схемы проводится расчет протяженности каналов.
  • Определяется расход на каждом ее участке. Каждый отдельный участок имеет единое сечение воздухопроводов.
  • После этого, проводятся вычисления скорости перемещения воздуха и давления в каждом отдельном участке системы.
  • Далее, вычисляются потери на трение.
  • Используя нужный коэффициент, вычисляется потери давления на местные сопротивления.

В процессе вычислений, на каждом участке воздухораспределительной сети получатся различные данные, которые необходимо уравнять с веткой наибольшего сопротивления при помощи диафрагм.

Калькуляторы расчёта параметров вентиляционной системы
Калькуляторы расчёта параметров вентиляционной системы
Калькуляторы расчёта параметров вентиляционной системы
Калькуляторы расчёта параметров вентиляционной системы
Калькуляторы расчёта параметров вентиляционной системы
Калькуляторы расчёта параметров вентиляционной системы
Калькуляторы расчёта параметров вентиляционной системы
Калькуляторы расчёта параметров вентиляционной системы
Калькуляторы расчёта параметров вентиляционной системы

Методика расчетов

Изначально необходимо сделать расчет необходимой площади сечения воздуховода исходя из данных по ее расходу.

  • Площадь сечения воздуховода рассчитывается по формуле

FP=LP/VT

где

LP

– данные по перемещению необходимого объема воздуха на конкретном участке.

VT

– рекомендованная или допустимая скорость воздуха в воздуховоде определенного назначения.

  • Получив искомые данные, производится подбор близкого к расчетному значению типоразмеру воздухопровода. Имея новые данные, производится вычисления реальной скорости перемещения газов на участке системы вентиляции, по формуле:

VФ=LP/FФ

где

LP

– расход газовой смеси.

– фактическая площадь сечения выбранного воздухопровода.

Аналогичные вычисления необходимо провести для каждого отдельного участка вентиляции.

Для правильного расчета скорости воздуха в воздуховоде, необходимо учитывать потери на трение и местные сопротивления. Одним из параметров, влияющих на величину потерь, является сопротивление на трение, который зависит от шероховатости материала воздухопровода. Данные о коэффициенте трения можно найти в справочной литературе.

Коэффициент трения

воздуховод с вентилятором

система вентиляции

Расчетный воздухообмен

За расчетное значение воздухообмена принимают максимальное значение из расчетов по теплопоступлениям, влагопоступлениям, поступлением вредных паров и газов, по санитарным нормам, компенсации местных вытяжек и нормативной кратности воздухообмена.

Воздухообмен жилых и общественных помещений обычно рассчитывают по кратности воздухообмена или по санитарным нормам.

После расчета требуемого воздухообмена составляется воздушный баланс помещений, подбирается количество воздухораспределителей и делается аэродинамический расчет системы. Поэтому советуем вам не пренебрегать расчетом воздухообмена, если хотите создать комфортные условия вашего пребывания в помещении.

Вычисление потерь на трение

Прежде всего следует учитывать следует учитывать форму воздухопровода и материал, из которого он изготовлен.

  • Для круглых изделий, формула расчета выглядит так:

Pтр = (x*l/d) * (v*v*y)/2g

где

Х

– табличный коэффициент трения (зависит от материала);

I

– длина воздухопровода;

Читайте также:  Технические характеристики и особенности котлов Протерм

D

– диаметр канала;

V

– темп движения газов на определенном участке сети;

Y

– плотность перемещаемых газов (определяется по таблицам);

G

– 9,8 м/с2

Важно! Если в воздухораспределительной системе используются прямоугольные каналы, то в формулу необходимо подставить эквивалентный сторонам прямоугольника (сечения воздуховода) диаметр. Вычисления можно произвести по формуле: dэкв = 2АВ/(А + В). Для перевода можно использовать и таблицу, представленную ниже.

  • Потери на местные сопротивления рассчитываются по формуле:

z = Q* (v*v*y)/2g

где

Q

— сумма коэффициентов потерь на местные сопротивления;

V

— скорость движения воздушных потоков на участке сети;

Y

– плотность перемещаемых газов (определяется по таблицам);

G

– 9,8 м/с2

Важно! При построении воздухораспределительных сетей, очень важную роль играет правильный выбор дополнительных элементов, к которым относятся: решетки, фильтры, клапаны и пр. Эти элементы создают сопротивление перемещению воздушных масс. При создании проекта следует обратить внимание и на правильный подбор оборудования, ведь лопасти вентилятора и работа осушителей, увлажнителей, помимо сопротивления, создают и наибольший шум и сопротивление воздушным потокам.

Рассчитав потери воздухораспределительной системы, зная требуемые параметры движения газов на каждом ее участке, можно переходить к подбору вентиляционного оборудования и монтажу системы.

Какой дефлектор выбрать

Если вы хотите установить колпак – усилитель тяги с минимальными затратами и не обслуживать изделие в процессе эксплуатации, рекомендуем остановиться на статичных моделях – дефлекторе Волпера либо ЦАГИ. Последний вариант предпочтительнее для собственноручного изготовления.

Совет. Размер насадки выбирайте по диаметру вытяжного ствола. Если из дома выведена прямоугольная шахта, подбор делается по эквивалентному круглому сечению. То есть, необходимо сделать расчет поперечника канала, потом взять круг аналогичной площади. При установке используется адаптер.

Рекомендации по выбору различных дефлекторов:

  1. При недостатке либо отсутствии тяги лучше ставить динамические версии колпаков – ротационный или флюгер.
  2. Покупая вращающуюся насадку, не гонитесь за дешевизной. В недорогих изделиях применен открытый шарнир – обычная втулка, которая замерзнет зимой. Подбирайте флюгер или турбодефлектор с закрытым подшипником.
  3. Н-образный колпак пригодится в местности с постоянными сильными ветрами. В остальных случаях лучше брать ЦАГИ.

Дефлекторы Astato приобретайте по желанию – усилитель будет работать в любых условиях. Но помните: движущиеся части насадки нужно периодически обслуживать.

Рекомендованная норма

Самостоятельно рассчитать скорость воздуха не так просто. Для этого используется сложная формула, в которой главным параметром будет диаметр и радиус сечения труб, а также размер вентиляционной решетки. Вычисления лучше доверить специалисту, который сможет получить максимально точный результат.

Показатели шума вентиляции
Стоит отметить, что показатели шума играют важную роль, поскольку при превышении нормы необходимо увеличивать сечение труб. Иногда исправить ситуацию можно с помощью установки труб из другого материала или устранения одного из загибов. Прямой канал всегда снижает показатель. При создании проекта здания специалисты учитывают каждый участок и делают расчеты.

Перед монтированием вентиляционной системы рабочие уже знают размеры каждой трубы, длину, ширину и направление, а также количество загибов, без которых практически невозможно установить конструкцию. Еще на стадии проектирования того или иного здания специалисты учитывают его назначение. После этого составляют схемы, опираясь на нормы, предоставленные в специальном документе (СНиП).

Считается, что в жилом помещении скорость воздуха в воздуховоде не должна превышать отметки 0,3 м/с. В случае проведения ремонтных работ допускается превышение этой нормы, но не более, чем на 30%. В производственных помещениях с большой площадью нередко функционируют две вентиляционные системы для повышения эффективности воздухообмена.

Каждая из систем работает не на полную мощность, поскольку так снижается эффективность обогрева помещения. В случае возникновения пожара одну из вентиляций останавливают принудительно, чтобы снизить скорость воздуха и исключить возгорание соседних объектов. Именно для этого устанавливаются специальные клапаны, которые при необходимости можно закрыть.

Полезные советы и примечания

Делая выводы по формулам или проводя вычисления в онлайн-калькуляторе, можно рассчитать, что скорость воздушных масс в сечении труб напрямую зависит от их габаритов. Чем меньше диаметр труб, тем больше будет скорость воздуха. Благодаря этому мы можем выявить несколько важных моментов:

  1. Строить воздуховоды небольших габаритов гораздо проще и удобней.
  2. Трубы малого диаметра стоят значительно дешевле, а цены на дополнительное оборудование (затворы и клапаны) снижаются.
  3. Расширение гибкости монтажа. Появляется возможность располагать воздуховоды, как требуется, поэтому подстраиваться под обстоятельства практически не приходится

Но при установке воздуховода малого диаметра важно помнить, что высокая скорость воздуха будет повышать давление на стены труб, а также сопротивление системы. Следовательно, понадобится вентилятор высокой мощности и возникнет потребность в других дополнительных элементах. Поэтому при работе с вентиляцией важно точно произвести все вычисления, чтобы экономия не привела к еще большим расходам или убыткам. Если строение не будет соответствовать вентиляционным стандартам СНиП, то его попросту не допустят к эксплуатации.

Заключение

Этот несложный расчет является частью аэродинамического расчета системы вентиляции и кондиционирования воздуха. Такие расчеты выполняются в специализированных программах или, например, в Excel.

Источники

  • https://sovet-ingenera.com/vent/raschety/skorost-vozduxa-v-vozduxovode.html
  • https://mir-klimata.info/raschjot-skorosti-vozduha-v-vozduhovode/
  • https://1poclimaty.ru/raschet/dopustimye-skorosti-vozduxa-v-vozduxovodax.html
  • https://OmShantiDom.ru/sistemy/kak-rasschitat-rashod-vozduha.html
  • https://oventilyacii.ru/ventilyaciya/skorost-vozduha-v-vozduhovode.html
  • https://kaminguru.com/kommunikacii/skorost-vozduha-v-vozduhovode.html
  • http://airducts.ru/skorost-v-vozduxovode/

[свернуть]
Ссылка на основную публикацию
Похожие публикации
Adblock
detector